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Abstract. The semiclassical trace formula provides the basic construction from which one
derives the semiclassical approximation for the spectrum of quantum systems which are chaotic
in the classical limit. When the dimensionality of the system increases, the mean level spacing
decreases as ¯hd , while the semiclassical approximation is commonly believed to provide an
accuracy of order ¯h2, independentlyof d. If this was true, the semiclassical trace formula would
be limited to systems ind 6 2 only. In this work we set out to define proper measures of
the semiclassical spectral accuracy, and to propose theoretical and numerical evidence to the
effect that the semiclassical accuracy, measured in units of the mean level spacing, depends only
weakly (if at all) on the dimensionality. Detailed and thorough numerical tests were performed
for the Sinai billiard in two and three dimensions, substantiating the theoretical arguments.

1. Introduction

The semiclassical analysis has proven to be a very useful tool in the field of ‘quantum
chaos’ as well as in many other fields. Nevertheless, one should bear in mind that it only
approximatesthe true quantal solution. Thus, it is imperative to know theerrors which
are inherent to the semiclassical approximation, and whether they could be considered to
be sufficiently small for the problem at hand.

We shall focus our attention on one particular application of the semiclassical
approximation: the calculation of the energy spectra of classically chaotic systems. The
analytical tool that is used for this purpose is the semiclassical Gutzwiller trace formula
[1] which expresses thequantumspectral density in terms ofclassical quantities, and in
particular the actions and stabilities of classical periodic orbits. The trace formula was
used, among other things, to explain and discuss spectral statistics and their relation to
the universal predictions of random matrix theory (RMT) [2, 3]. However, a prerequisite
for the use of the semiclassical approximation to compute short-range statistics is that
it is able to reproduce the exact spectrum within an error which is comparable with or
less than the mean level spacing! This is a demanding requirement, and quite often, the
ability of the semiclassical approximation to reproduce precise levels for high-dimensional
systems is doubted, and on the following grounds. The mean level spacing depends on
the dimensionality (number of freedoms) of the system, and it isO(h̄d)[4]. Gutzwiller [1]
used an argument by Pauli [5] to show that in general the error margin for the semiclassical
approximation scales asO(h̄2) independently of the dimensionality. Applied to the trace
formula, the expected error in units of the mean spacing, which is the figure of merit in the
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present context, is therefore expected to beO(h̄2−d). We shall refer to this as the ‘traditional
estimate’. It setsd = 2 as a critical dimension for the applicability of the semiclassical trace
formula and hence for the validity of the conclusions which are drawn from it. The few
systems ind > 2 dimensions which were numerically investigated display spectral statistics
which adhere to the predictions of RMT as accurately as their counterparts ind = 2 [6–8].
Thus, the ‘traditional estimate’ cannot be entirely correct in the present context, and we
shall explain the reasons why it is inadequate when we discuss other error bounds in the
next section.

It is rather surprising that the problem of the accuracy of the semiclassical trace formula
is rarely touched upon in the literature. Gutzwiller quoted the ‘traditional’ estimate of
O(h̄2−d) which was discussed above [1, 9]. Gaspard and Alonso [10] and Alonso and
Gaspard [11] derived explicit (generic) ¯h corrections for the periodic orbit terms in the
trace formula, but did not investigate their effect on the semiclassical accuracy of energy
levels. Diffraction corrections were discussed in the context of the trace formula by Vattay
et al [12] and Primacket al [13]. Also in these works the focus is on the corrections to
individual periodic orbit terms rather than on the overall effect on energy levels. Boasman
[14] studied the accuracy of the boundary integral method (BIM) [15] for two-dimensional
(2D) billiards in the case where the exact kernel is replaced by its semiclassical asymptotic
approximation. Boasman found that the resulting error is of the same magnitude as the
mean spacing, which is consistent with the traditional estimate. However, Boasman’s work
does not refer directly to the trace formula and periodic orbits contributions. The works
of Bleher [16, 17] and Prosen and Robnik [18] discuss the accuracy of the semiclassical
approximation in the integrable case.

The purpose of this work is to address the subject of the accuracy of the semiclassical
trace formula conceptually, theoretically and numerically. We shall be particularly interested
in the dependence of the semiclassical error on thedimensionof the system. To do so, we
shall have to start by developing the basic concepts and define the measures we use for
a quantitative estimate of the spectral error (section 2). The accuracy of the semiclassical
approximation of the quantal energy spectrum will then be studied via the dual classical
spectrum of actions and stabilities of periodic orbits (time spectrum). This will enable us
to use our database of quantum levels and periodic orbits for the Sinai billiards in two and
three dimensions for a direct evaluation of the semiclassical error (section 3). We shall
summarize the paper and discuss a few relevant points in section 4.

2. Measures of the semiclassical error

In order to define a proper error measure for the semiclassical approximation of the energy
spectrum one has to clarify a few issues. In contrast to the EBK quantization which gives an
explicit formula for the spectrum, the semiclassical spectrum for chaotic systems isimplicit
in the trace formula, or in the semiclassical expression for the spectral determinant. To
extract the semiclassical spectrum we recall that the exact spectrum,{En}, can be obtained
from the exact counting function:

N(E) ≡
∞∑
n=1

2(E − En) (1)

by solving the equation

N(En) = n− 1
2 n = 1, 2, . . . . (2)
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In the last equation, an arbitrarily small amount of smoothing must be applied to the
Heavyside function. In complete analogy, one obtains the semiclassical spectrum{Esc

n }
as [19]:

Nsc(E
sc
n ) = n− 1

2 n = 1, 2, . . . (3)

whereNsc is a semiclassical approximation ofN . Note thatNsc with which we start is not
necessarily a sharp counting function. However, once{Esc

n } is known, we can ‘rectify’ the
smoothNsc into the sharp counting functionN#

sc [3]:

N#
sc(E) ≡

∞∑
n=1

2(E − Esc
n ). (4)

The simplest choice forNsc is the Gutzwiller trace formula [1] truncated at the
Heisenberg time, which is what we shall use in this paper. Alternatively, one can
start from the regularized Berry–Keating Zeta functionζsc(E) [20], and defineNsc =
(−1/π)Im logζsc(E + i0), in which caseNsc= N#

sc.
Next, in order to define a quantitative measure of the semiclassical error, one should

establish acorrespondencebetween the quantal and semiclassical levels, namely, one should
identify the semiclassical counterparts of the exact quantum levels. In classically chaotic
systems, for which the Gutzwiller trace formula is applicable, the only constant of the
motion is the energy. This is translated into a single ‘good’ quantum number in the quantum
spectrum, which is the ordinal number of the levels when ordered by their magnitude. Thus,
the only correspondence which can be established between the exact spectrum{En} and its
semiclassical approximation,{Esc

n }, is

En←→ Esc
n . (5)

This is to be contrasted with integrable systems, where it is appropriate to compare the
exact and approximate levels which have the same quantum numbers.

The scale on which the accuracy of semiclassical energy levels should be measured
depends, in general, on the problem at hand. The most natural choice, however, is the
mean level spacing(d̄(E))−1 where d̄ is the smooth density of states. The semiclassical
error of thenth level is therefore measured by [14]:

εn ≡ d̄(En)(En − Esc
n ). (6)

A more useful and significant measure is the average ofεn over an energy interval1E
centred atE, which contains a large number of quantum energies, but which must be so
small that both the classical dynamics and the mean density of states remain approximately
constant. This energy averaging will be denoted by triangular brackets〈·〉E in the following.
If the semiclassical mean densitȳdsc agrees withd̄ to a high precision, then obviously
ε(E) ≡ 〈εn〉E = 0. In this caseε(E) is not a useful error measure. For billiard systems this
is always the case, since the mean spectral density can be written as an asymptotic series
with explicitly known coefficients [21–23]. For general systems, only the leading Weyl
term is explicitly known. Two appropriate measures which are sensitive to the accuracy of
the fluctuating parts of the level densities are the mean absolute error:

ε(1)(E) ≡ 〈d̄(En)|En − Esc
n |〉E (7)

and the variance:

ε(2)(E) ≡ 〈(d̄(En)(En − Esc
n ))

2〉E. (8)

Having defined the spectral error measures, let us apply them and try to generate some
estimates of the semiclassical error. In the introduction we mentioned the ‘traditional’
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estimate of the semiclassical error. Gutzwiller [1, 9] showed, based on [5], that the inherent
error in the semiclassical (Van-Vleck) approximation of the quantal time propagator scales
like O(h̄2). Since the energy levels are the temporal Fourier components of the propagator,
it is plausible to assume that they have the same degree of accuracy:

En − Esc
n = O(h̄2) ‘traditional’. (9)

(Strictly speaking, this is an upper bound.) The mean density of energy levels, for a general
d-dimensional system is asymptotically given by Weyl’s formula [4]:

d̄(E) ≈ ω(E)

hd
= O(h̄−d) (10)

whereω(E) is the measure of the energy surface in the classical phase space. Hence,

εtraditional= O(h̄2−d) −→
{

constant d = 2

∞ d > 3
ash̄→ 0. (11)

That is, the semiclassical approximation is (marginally) accurate in two dimensions, but it
fails to predict accurate energy levels for three dimensions or more.

One may obtain a different estimate of the semiclassical error, if the Gutzwiller trace
formula (GTF) is used as a starting point. Suppose that we have calculatedNsc to a certain
degree of precision, and we compute from it the semiclassical energies using (3). The
quality of this approximation can be estimated if the leading corrections1Nsc are also
included and the resulting energy differencesδn are evaluated. We thus need to consider:

Nsc(E
sc
n + δn)+1Nsc(E

sc
n + δn) = n− 1

2. (12)

Combining (3) and (12) we get to first order inδn:

δn ≈ 1Nsc(E
sc
n )

∂Nsc(Esc
n )/∂E

≈ 1Nsc(E
sc
n )

d̄(Esc
n )

. (13)

In the above we assumed that the fluctuations ofNsc around its average are not very large.
Thus,

εGTF ≈ d̄(Esc
n )δn ≈ 1Nsc(E

sc
n ). (14)

Let us apply the above formula and consider the case in which we take forNsc its mean
part N̄ , and that we include inN̄ terms of order up to (and including) ¯h−m,m 6 d. For
1Nsc we use both the leading correction tōN and the leading-order periodic orbit sum
which is (formally) of order ¯h0. Hence,

εGTF
N̄
= O(h̄−m+1)+O(h̄0) = O(h̄min(−m+1,0)). (15)

We conclude that approximating the energies only by the mean counting functionN̄ up to
(and not including) the constant term, is already sufficient to obtain semiclassical energies
which are accurate toO(h̄0) = O(1) with respect to the mean density of states. Note
again that no periodic orbits were included inNsc. Including less terms inN̄ will lead
to a diverging semiclassical error, while more terms will be masked by the periodic orbit
(oscillatory) term. One can do even better if one includes inNsc the smooth terms up to
and including the constant term (O(h̄0)) together with the leading-order periodic orbit sum
which is formally alsoO(h̄0). The semiclassical error is then:

εGTF
po = O(h̄1). (16)

That is, the semiclassical energies measured in units of the mean level spacing are
asymptotically accurate independently of the dimension! This estimate grossly contradicts
the ‘traditional’ estimate (11) and calls for an explanation.
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The first point that should be noted is that the order of magnitude (power of ¯h) of
the periodic orbit sum, which we considered above to beO(h̄0), is only a formal one.
Indeed, each term which is due to asingle periodic orbit is of orderO(h̄0). However, the
periodic orbit sumabsolutely diverges, and at best it is onlyconditionally convergent. To
give it a numerical meaning, the periodic orbit sum must therefore be regularized. This is
effectively achieved by truncating the trace formula or the corresponding spectralζ function
[24, 25, 20, 26]. However, the truncation cut-off itself depends on ¯h. One can conclude
that the simple-minded estimate (16) given above is at best a lower bound, and the error
introduced by the periodic orbit sum must be re-evaluated with more care. This point will
be dealt with in great detail in the following, and we shall eventually develop a meaningful
framework for evaluating the magnitude of the periodic orbit sum.

The connection and disparity between the ‘traditional’ estimate of the semiclassical error
and the one based on the trace formula can be further illustrated by the following argument.
The periodic orbit formula is derived from the semiclassical propagatorKsc using further
approximations [1]. One thus wonders, how can it be thatfurther approximations ofKsc

actually reduce the semiclassical error from (11) to (16)? The puzzle is resolved if we
recall that in order to obtainεGTF

po above we separated the density of states into smooth and
oscillating parts, and we required that the smooth part is accurate enough. To achieve this,
we have to go beyond the leading Weyl’s term and to use specialized methods to calculate
the smooth density of states beyond the leading order. These methods are mostly developed
for billiards [21–23]. In any case, to obtainεGTF

po we have addedadditional information
which goes beyond the leading semiclassical approximation.

A straightforward check of the accuracy of the semiclassical spectrum using the error
measuresε, ε(1), ε(2) is exceedingly difficult due to the large number of periodic orbits
needed because of the exponential proliferation in chaotic systems. The few cases where
such tests were carried out involved 2D systems and it was possible to check only the
lowest (less than 100) levels (e.g. [27, 28]). The good agreement between the exact and
the semiclassical values confirmed the expectation that in two dimesions the semiclassical
error is small. In three dimensions, the topological entropy is typically much larger [19, 7],
and the direct test of the semiclassical spectrum becomes prohibitive.

Faced with this grim reality, we have to introduce alternative error measures which
yield the desired information, but which are more appropriate for a practical calculation.
We construct the measure:

δ(2)(E) ≡ 〈|N(E)−N#
sc(E)|2〉E. (17)

As before, the triangular brackets indicate averaging over an energy interval1E aboutE.
We shall now show thatδ(2) faithfully reflects the deviations between the spectra, and is
closely related toε(1) andε(2). Note that the following arguments are purely statistical and
apply to every pair of staircase functions.

Suppose first, that all the differencesEsc
n −En are smaller than the mean spacing. Then,

|N −N#
sc| is either 0 or 1 (see figure 1) and hence|N −N#

sc| = |N −N#
sc|2. Consequently,

δ(2)(E) ≈ 〈|N(E)−N#
sc(E)|〉E small deviations. (18)

However, the right-hand side of the above equation (the fraction of non-zero contributions)
equalsε(1). Thus,

δ(2) ≈ ε(1) small deviations. (19)

If, on the other hand, deviations are much larger than one mean spacing, the typical
horizontal distancēd|E − En| should be comparable with the vertical distance|N − N#

sc|,
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Figure 1. Illustration of |N(E) − N#
sc(E)| for small deviations between quantum and

semiclassical energies:ε(1) � d̄−1 ≡ 1̄. The quantum staircaseN(E) is denoted by the
full line and the semiclassical staircaseN#

sc(E) is denoted by the broken line. The difference is
shaded.

and hence, in this limit

δ(2) ≈ ε(2) large deviations. (20)

Therefore, we expectδ(2) to interpolate betweenε(1) and ε(2) throughout the entire range
of deviations. This behaviour is indeed observed in a numerical test which was performed
to check the above expectations. We considered the unfolded exact spectrum (normalized
to unity mean spacing [29]) of the three-dimensional (3D) Sinai billiard{Xn} and created
from it a synthetic spectrum by adding a random variable with 0 mean and varianceσ 2:

Xσn = Xn +Xrandom(0, σ ). (21)

The {Xσn } has also a unity mean spacing and it is meant to imitate a semiclassical spectrum.
After sorting {Xσn } we calculated the measuresε(1), ε(2) and δ(2) as functions ofσ . The
results are shown in figure 2, and they verify estimates (19) and (20) in the appropriate
limits. The numerical test reported in figure 3 demonstrates another attractive feature of the
measureδ(2): it is completely equivalent toε(2) when the spectral counting functions are
replaced by their smooth counterparts, provided that the smoothing width is of the order of
1 mean level spacing and the same smoothing is applied to both counting functions. That is,

δ
(2)
smooth≈ ε(2) (22)

for all deviations. (In fact, for small deviations there is a proportionality factor, but it can
be set to 1 if an appropriate smoothing is used.) In testing the semiclassical accuracy,
this kind of smoothing is essential and will be introduced by truncating the trace formula
at the Heisenberg timetH ≡ hd̄. These properties of the measureδ(2), and its complete
equivalence toε(2) for smooth counting functions, renders it a most appropriate measure of
the semiclassical error.

We now turn to the practical evaluation ofδ(2). To affect the energy averaging,
we choose a positive window functionw(E′ − E) which has a width1E nearE and
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Figure 2. The spectral measuresε(1), ε(2), δ(2) and and their asymptotics for a wide range of
spectral deviationsσ . The random distribution was Gaussian, and similar results were obtained
also for a uniform distribution. Note the logarithmic scale.

is normalized by
∫ +∞
−∞ dE′w2(E′) = 1. It falls off sufficiently rapidly so that all the

expressions which follow are well behaved. Construct the following counting functions that
have an effective support on an interval of size1E aboutE:

N̂(E′;E) ≡ w(E′−E)N(E′) (23)

N̂#
sc(E

′;E) ≡ w(E′−E)N#
sc(E

′). (24)

At this stageN̂ andN̂#
sc are still sharp staircases, and we note that the multiplication withw

preserves the sharpness of the stairs (it is not a convolution!). We now explicitly construct
δ(2)(E) as:

δ(2)(E) =
∫ +∞
−∞

dE′ |N̂(E′;E)− N̂#
sc(E

′;E)|2

=
∫ +∞
−∞

dE′ |N(E′)−N#
sc(E

′)|2w2(E′ − E). (25)

To constructδ(2)smooth we need to smoothN,N#
sc over a scale of order of one mean spacing.

This can be done for example by replacing the sharp stairs by error functions. As forN#
sc,

we prefer to simply replace it with the originalNsc, which we assume to be smooth over
one mean spacing. That is, we suppose thatNsc contains periodic orbits up to Heisenberg
time. Hence,

δ
(2)
smooth(E) =

∫ +∞
−∞

dE′ |Nsmooth(E′)−Nsc(E
′)|2w2(E′ − E). (26)

A comment is in order here. Strictly speaking, to satisfy (22) we need to apply the same
smoothing toN and N#

sc, and in generalN#,smooth
sc 6= Nsc, but there are differences of
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Figure 3. Comparison of the measuresδ(2)smooth andε(2) for a wide range of spectral deviations
σ and for Gaussian distribution. The difference is also plotted since the curves almost overlap.
Note the logarithmic scale.

order 1 between the two functions. However, since our goal is to determine whether the
semiclassical error remains finite or diverges in the semiclassical limit ¯h→ 0, we disregard
such inaccuracies of order 1. If a more accurate error measure is needed, then more care
should be taken in this and in the following steps.

Applying Parseval’s theorem to (26) we obtain:

δ
(2)
smooth(E) =

1

h̄

∫ +∞
−∞

dt |D̂(t;E)− D̂sc(t;E)|2 (27)

where

D̂(t;E) ≡ 1√
2π

∫ +∞
−∞

dE′ N̂smooth(E′;E) exp(iE′t/h̄) (28)

D̂sc(t;E) ≡ 1√
2π

∫ +∞
−∞

dE′ N̂sc(E
′;E) exp(iE′t/h̄). (29)

We shall refer toD̂, D̂sc as the (regularized) quantal and semiclassical time spectra,
respectively. This name can be justified by invoking the Gutzwiller trace formula and
expressing the semiclassical counting function as a mean part plus a sum over periodic
orbits. We have:

Nsc(E) = N̄(E)+
∑

po

h̄Aj (E)

Tj (E)
sin[Sj (E)/h̄− νjπ/2] (30)

whereAj = Tj/(πh̄rj
√|I −Mj |) is the semiclassical amplitude of thej th periodic orbit,

andTj , Sj , νj ,Mj , rj are its period, action, Maslov index, monodromy and repetition index,
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respectively. Then, the corresponding time spectrum reads:

D̂sc(t;E) ≈ D̄(t;E)+ 1

2i

∑
po

h̄Aj (E)

Tj (E)
{e(i/h̄)[Et+Sj (E)]ŵ([t + Tj (E)]/h̄)

−e(i/h̄)[Et−Sj (E)]ŵ([t − Tj (E)]/h̄)}. (31)

In the above, the Fourier transform ofw is denoted byŵ. It is a localized function oft whose
width is 1t ≈ h̄/1E. The sum over the periodic orbits inDsc therefore produces sharp
peaks centred at times that correspond to the periodsTj , hence the name ‘time spectrum’.
The termD̄ corresponds to the smooth part and is thus sharply peaked neart = 0. To
obtain (31) we expanded the actions nearE to first order:Sj (E′) ≈ Sj (E)+ (E′ −E)Tj (E).
We note in passing that this approximate expansion ofSj can be avoided altogether if one
performs the Fourier transform over ¯h−1 rather than over the energy. This way, an action
spectrum will emerge, but also here the action resolution will be finite, because the range
of h̄−1 should be limited to the range wherēd(E; h̄) is approximately constant. It turns
out therefore, that the two approaches are essentially equivalent, and for billiards they are
identical.

The manipulations done thus far were purely formal, and did not manifestly circumvent
the difficult task of evaluatingδ(2)smooth. However, the introduction of the time spectra and
formula (27) puts us in a better position than with the original expression (25). The
advantages of using the time spectra in the present context are the following.
• The semiclassical time spectrum̂Dsc(t;E) is absolutely convergent for all times (as

long as the window functionw is well behaved, e.g. it is a Gaussian). This statement is
correct even if the sum (31) extends over the entire set of periodic orbits! This is in contrast
to the trace formula expression forNsc (and thereforeN̂sc) which is absolutely divergent if
all of the periodic orbits are included.
• Timescale separation: as we noted above, the time spectrum is peaked at times that

correspond to periods of the classical periodic orbits. This allows us to distinguish between
various qualitatively different types of contributions toδ(2)smooth.

We shall now pursue the separation of the timescales in detail. We first note that due
to N̂, N̂sc being real, there is at ↔ (−t) symmetry in (27) and thereforeδ(2) = 2

∫∞
0 . . . .

We now divide the time axis into four intervals:
• 06 t 6 1t . The shortest timescale in our problem is1t = h̄/1E. The contributions

to this time interval are due to the differences between the exact and the semiclassical
meandensities of states. This is an important observation, since it allows us to distinguish
between the two sources of semiclassical error—the error that emerges from the mean
densities and the error that originates from the fluctuating part (periodic orbits). Since we
are only interested in the semiclassical error that results from the fluctuating part of the
spectral density, we shall ignore this regime in the following.
• 1t 6 t 6 terg. This is the non-universal regime [29], in which periodic orbits are

still sparse, and cannot be characterized statistically in a significant fashion. The ‘ergodic’
timescaleterg is purely classical and is independent of ¯h.
• terg 6 t 6 tH. In this time regime periodic orbits are already in the universal

regime and are dense enough to justify a statistical approach to their proliferation and
stability. The upper limit of this interval is the Heisenberg timetH = hd̄(E), which is the
time that is needed to resolve the quantum (discrete) nature of a wavepacket with energy
concentrated nearE. The Heisenberg time is ‘quantum’ in the sense that it is dependent of
h̄: tH = O(h̄1−d).
• tH 6 t < ∞. This is the interval of ‘long’ orbits which is effectively truncated

from the integration as a result of introducing a smoothing of the quantal and semiclassical
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counting functions, with a smoothing scale of the order of a mean level spacing.
Dividing the integral (27) according to the above time intervals, we can rewriteδ

(2)
smooth:

δ
(2)
smooth(E) =

(∫ terg

1t

+
∫ tH

terg

+
∫ ∞
tH

)
2dt

h̄
|D̂(t;E)− D̂sc(t;E)|2

≡ δ(2)short+ δ(2)m + δ(2)long. (32)

As explained above,δ(2)long can be ignored due to smoothing on the scale of a mean level

spacing. The integralδ(2)short is to be neglected for the following reason. The integral extends
over a time interval which is finite and independent of ¯h, and therefore it contains a fixed
number of periodic orbits contributions. The semiclassical approximation provides, for each
individual contribution, the leading order in ¯h, and therefore [30] we should expect:

δ
(2)
short−→ 0 ash̄ −→ 0. (33)

The purpose of this work is to check whether the semiclassical error is finite or divergent
ash̄ −→ 0, and to study if the rate of divergence depends on dimensionality. Equation (33)
implies thatδ(2)short cannot affectδ(2) in the semiclassical limit and we shall neglect it in the
following.

We thus remain with a lower bound for our measure:

δ
(2)
smooth≈ δ(2)m (34)

which is going to be our object of interest hereafter.
The fact thattH is extremely large on the classical scale renders the calculation of all the

periodic orbits with periods less thantH an impossible task. However, sums over periodic
orbits when the period is longer thanterg tend to meaningful limits, and hence, we would
like to recast the expression forδ(2)m in the following way. Writeδ(2)m as:

δ(2)m =
2

h̄

∫ tH

terg

dt 〈|D̂(t)− D̂sc(t)|2〉t (35)

= 2

h̄

∫ tH

terg

dt 〈|D̂(t)|2〉t ×
[
〈|D̂(t)− D̂sc(t)|2〉t
〈|D̂(t)|2〉t

]
(36)

≡ 2

h̄

∫ tH

terg

dt 〈|D̂(t)|2〉t × C(t) (37)

=
∫ tH

terg

envelope× correlation

where the parametric dependence onE was omitted for brevity. The smoothing overt is
explicitly indicated to emphasize that one may use a statistical interpretation of the terms
of the integrand. This is so because in this domain, the density of periodic orbits is so
large that within a time interval of width ¯h/1E there are exponentially many orbits whose
contributions are averaged due to the finite resolution.

We note now that we can use the following relation between the time spectrum and the
spectral form factorK(τ):

〈|D̂(t)|2〉t
h̄

dt = K(τ)

4π2τ 2
dτ (38)

whereτ ≡ t/tH is the scaled time. The above form factor is smoothed according to the
window functionw. Hence:

δ
(2)
smooth≈

1

2π2

∫ 1

τerg

dτ
K(τ)C(τ)

τ 2
. (39)
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For generic chaotic systems we expect thatK(τ) agrees with the results of RMT in the
universal regimeτ > τerg [31, 2, 29], and therefore

K(τ) ≈ gτ for τerg< τ 6 1 (40)

whereg = 1 for systems which violate time reversal symmetry, andg = 2 if time reversal
symmetry is respected. This implies that the evaluation ofδ

(2)
smooth reduces to

δ
(2)
smooth≈

g

2π2

∫ 1

τerg

dτ
C(τ)

τ
. (41)

The dependence on ¯h in this expression comes from the lower integration limit which is
proportional toh̄d−1 as well as from the implicit dependence of the functionC on h̄.

Formula (41) is our main theoretical result. However, we do not know how to evaluate
the correlation functionC(τ) from first principles. The knowledge of the ¯h corrections
to each of the terms in the semiclassical time spectrum is not sufficient since the resulting
series which ought to be summed is not absolutely convergent (see the detailed discussion in
section 4). Therefore we have to recourse to a numerical analysis, which will be described
in the next section. The numerical approach requires one further approximation, which is
imposed by the fact that the number of periodic orbits witht < tH is prohibitively large.
We had to limit the database of periodic orbit to the domaint < tcpu with terg� tcpu� tH.
The timetcpu has no physical origin, and it represents only the limits of our computational
resources. Using the available numerical data we were able to computeC(t) numerically
for all terg < t < tcpu and we thenextrapolatedit to the entire domain of interest. We
consider this extrapolation procedure to be the main source of uncertainty. However, since
the extrapolation is carried out in theuniversal regime, it should be valid if there are no
other timescales betweenterg and tH.

3. Numerical results

We used the formalism and definitions presented above to check the accuracy of the
semiclassical spectra of the 2D and 3D Sinai billiards. The most important element in
this numerical study is the fact that we could apply thesameanalysis to the two systems,
and by comparing them to give a reliable answer to the main question posed in this work,
namely, how does the semiclassical accuracy depend on dimensionality.

The classical dynamics in billiards depends trivially on the energy (velocity), and
therefore the relevant parameter is the length rather than the period of the periodic orbits.
Because of the same reason, the quantum wavenumberskn ≡

√
2mEn/h̄ are the relevant

variables in the quantum description. Hereafter we shall use the variables(l, k) instead of
(t, E), and use ‘length spectra’ rather than ‘time spectra’. The semiclassical limit is obtained
for k → ∞ andO(h̄) is equivalent toO(k−1). Note also that for a billiardN̄(k) ≈ Akd
whereA is proportional to the billiard’s volume.

The numerical work is based on the quantum spectra and on the classical periodic
orbits which were calculated by Schanz and Smilansky [32, 33] for the 2D billiard, and by
Primack and Smilansky [6, 7] for the 3D billiard. The numerical methods and the checks
performed to ensure that the quantum and the classical databases are accurate, complete and
immaculate are discussed in the papers cited above.

We start with the 2D Sinai billiard, which is the free space between a square of edge
L and an inscribed disk of radiusR, with 2R < L. In our case we usedL = 1 and
R = 0.25 and considered the quarter desymmetrized billiard (see figure 4) with Dirichlet
boundary conditions for the quantum calculations. The quantal database consisted of the
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Figure 4. (a) The quarter desymmetrized 2D Sinai billiard. (b) The fully ( 1
48) desymmetrized

3D Sinai billiard (heavy lines).

lowest 27 645 eigenvalues in the range 0< k < 1320, with eigenstates which are either
symmetric or antisymmetric with respect to reflection on the main diagonal. The classical
database consisted of the shortest 20 273 periodic orbits (including time reversal, reflection
symmetries and repetitions) in the length range 0< l < 5. For each orbit, the length, the
stability determinant and the reflection phase were recorded.

We begin the numerical analysis of the 2D Sinai billiard by numerically demonstrating
the correctness of equation (33). That is, that for eachindividual periodic orbit, the
semiclassical error indeed vanishes in the semiclassical limit. In figure 5 we plot|D−Dsc|
for l = 0.5 as a function ofk. This length corresponds to the shortest periodic orbit, that
is, the one that runs along the edges that connect the circle with the outer square. ForDsc

we used the GTF. As is clearly seen from the figure, the quantal-semiclassical difference
indeed vanishes (approximately ask−1), in accordance with (33). We emphasize again that
this behaviour does not imply thatδ(2) vanishes in the semiclassical limit, since the number
of terms depends onk. It implies only that δ(2)short vanishes in the limit, since it consists
of a fixed and finite number of periodic orbit contributions. We should also comment that
(non-generic) penumbra corrections to individual grazing orbits introduce errors which are
of order k−γ with 0 < γ < 1 [34, 13]. However, since the definition of ‘grazing’ is in
itself k dependent, one can safely neglect penumbra corrections in estimating the largek

behaviour ofδ(2)short.
We now turn to the main body of the analysis, which is the evaluation ofδ(2)m for the 2D

Sinai billiard. Based on the available data sets, in figure 6 we plot the functionC(l; k) in
the interval 2.5< l < 5 for various values ofk. One can observe, that as a function ofl the
functionsC(l; k) fluctuate in the interval for which numerical data were available, without
exhibiting any systematic mean trend to increase or decrease. We therefore approximate
C(l; k) by

C(l; k) ≈ constant· f (k) ≡ Cavg(k). (42)

According to the discussion in section 2 we extrapolate this formula inl up to the Heisenberg
lengthLH = 2πd̄(k) and using (41) we obtain:

δ
(2),2D
smooth=

Cavg(k)

2π2
ln(LH/Lerg) = Cavg(k) O(ln k). (43)
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Figure 5. The absolute difference between the quantal and semiclassical (Gutzwiller) length
spectra for the 2D Sinai billiard atl = 0.5. This length corresponds to the shortest unstable
periodic orbit. The average log–log slope is about−1.1, indicating approximatelyk−1 decay.
The data were averaged with a Gaussian window.

The last equality is due toLH = O(kd−1). To evaluateCavg(k) we averagedC(l; k) over
the intervalLerg = 3.5 < l < 5 = Lcpu and the results are shown in figure 7. We choose
Lerg= 3.5 because the density of periodic orbits is already large for this length (see figure 6)
and we expect universal behaviour of the periodic orbits. (For the Sinai billiard described
by flow the approach to the invariant measure is algebraic rather than exponential [35, 36],
and thus one cannot have a well-definedLerg. At any rate, the specific choice ofLerg did
not affect the results in any appreciable way.) InspectingCavg(k), it is difficult to arrive at
firm conclusions, since it seems to fluctuate around a constant value up tok ≈ 900 and then
to decline. If we approximateCavg(k) by a constant, we get a ‘pessimistic’ value ofδ(2):

δ
(2),2D
smooth(k) = O(ln k) = O(ln h̄) ‘pessimistic’ (44)

while if we assume thatCavg(k) decays as a power-law,Cavg(k) = k−β, β > 0, then

δ
(2),2D
smooth(k) = O(k−β ln k) −→ 0 ‘optimistic’. (45)

Collecting the two bounds we find:

O(k−β ln k) 6 δ(2),2D
smooth(k) 6 O(ln k). (46)

Our estimates for the 2D Sinai billiard can be summarized by saying that the semiclassical
error diverges no worse than logarithmically (meaning, very mildly). It may well happen
that the semiclassical error is constant or even vanishes in the semiclassical limit. To reach
a conclusive answer one should invest exponentially larger amount of numerical work.

There are a few comments in order here. First, the quarter desymmetrization of the 2D
Sinai billiard does not exhaust its symmetry group, and in fact, a reflection symmetry around
the diagonal of the square remains. This means, that the spectrum of the quarter 2D Sinai
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Figure 6. The functionsC(l; k) for quarter 2D Sinai billiardL = 1, R = 0.25 with Dirichlet
boundary conditions. The windoww(k′ −k) was taken to be a Gaussian with standard deviation
σ = 60. We averagedC(l; k) over l-intervals of≈ 0.2 in accordance with (36) to avoid sharp
peaks due to small denominators. The averaging, however, is fine enough not to wash out all
of the features ofC(l; k). The vertical bars indicate the locations of primitive periodic orbits,
and the daggers indicate the locations of the bouncing-ball families.

billiard is composed of two independent spectra, which differ by their parity with respect
to the diagonal. If we assume that the semiclassical deviations of the two spectra are not
correlated, the above measure is the sum of the two independent measures. It is plausible
to assume also that both spectra have roughly the same semiclassical deviation, and thus
δ
(2),2D
smooth is twice the semiclassical deviation of each of the spectra. Second, we recall that

the 2D Sinai billiard contains ‘bouncing-ball’ families of neutrally stable periodic orbits
[37, 38, 32]. We have subtracted their leading-order contribution fromD̂ such that it
includes (to leading order) only contributions from generic, isolated and unstable periodic
orbits. This is done since we would like to deduce from the 2D Sinai billiard on the 2D
generic case in which the bouncing-balls are not present. (In the Sinai billiard, which is
concave, there are also diffraction effects [34, 13], but we did not treat them here.) Third,
the variant of (38) for billiards reads:

〈|D̂(l)|2〉l dl = K(ξ)

4π2ξ2
dξ (47)

whenξ ≡ l/LH. In figure 8 we demonstrate the compliance of the form factor with RMT
GOE using the integrated version of the above relation, and taking into account the presence
of two independent spectra. Fourth, it is interesting to know the actual numerical values
of δ(2),2D

smooth(k) for the k values that we considered. We carried out the computation, and the
results are presented in figure 9. It is interesting to observe that for the entire range we
haveδ(2),2D

smooth(k) ≈ 0.1� 1, which is very encouraging from an ‘engineering’ point of view.
We now turn to the analysis of the 3D Sinai billiard. The billiard is the free space

between a cube of edgeL and an inscribed sphere of radiusR, where 2R < L (see
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Figure 7. Averaging inl of C(l; k) for 2D Sinai billiard as a function ofk.

Figure 8. Verification of equation (47) for the quarter 2D Sinai billiard. We plotI (ξ) ≡∫ 2
ξ

dξ ′K(ξ ′)/ξ ′2 and compare the quantum data with RMT. The minimalξ corresponds to
Lerg = 3.5. The integration is done for smoothing, and we fix theupper limit to avoid biases
due to non-universal regime. Note the logarithmic scale.

figure 4). We usedL = 1 andR = 0.2 and desymmetrized the billiard to the fundamental
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Figure 9. The numerical values ofδ(2)smooth for the quarter 2D Sinai billiard. We included also

the contributionδ(2)short of the non-universal regime. The contributions from the time interval

terg 6 t 6 tcpu are contained inδ(2)m,cpu, and δ(2)m,ext is the extrapolated value fortcpu 6 t 6 tH
(refer to (32) and to the end of section 2).

element (148 of the original one). We calculated the lowest 6697 quantum levels in the
interval 0< k < 281.1 and the shortest 586 965 periodic orbits with length 0< l < 5 (the
number includes repetitions and time-reversal conjugates).

To treat the 3D Sinai billiard we need to somewhat modify the formalism which was
presented in the previous section. This is due to the fact that in 3D the contributions of
the various non-generic bouncing-ball manifolds overwhelm the spectrum [6, 7]. Since our
goal is to give an indication of the semiclassical error in generic systems, it is imperative
to omit this very strong non-generic effect. The bouncing-ball amplitudes areO(k(s−1)/2)

where s is the dimensionality of bouncing-ball manifold in configuration space. In 3D
s = 3 typically, which completely overwhelms the contributions from isolated periodic
orbits whose amplitude isO(k0). Even the diffraction corrections to the bouncing-ball
amplitudes in 3D increase asO(kγ ) with γ > 0. In contrast to the 2D case, however, it is
difficult to subtract the bouncing-ball contributions analytically for two main reasons. First,
there are always infinitely many bouncing-ball primitive families in the 3D case, while in
2D there is only a finite number. Indeed, in any finite-length interval there exists only a
finite number of bouncing-ball lengths, however their number for billiards in 3D exceeds by
far the corresponding number for billiards in 2D. Second, the semiclassical amplitudes of
the bouncing balls are proportional to their volume in configuration space, and it is difficult
in general to calculate it analytically. Thus, to overcome these difficulties we had to devise
a special method to cleanse the spectrum from the effect of the bouncing balls and from
the leading diffractive corrections. This method relies on the sensitivity of the eigenvalues
to the boundary condition and it is described in detail in [39, 7]. We shall briefly describe
the essence of the method.
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The most general (‘mixed’) boundary conditions under which the quantum billiard
problem is self-adjoint can be written as [21, 39]:

κ cosαψ(r)+ sinα∂nψ(r) = 0 r ∈ (boundary of the billiard) (48)

wheren is the normal pointing outside of the billiard, the angleα interpolates smoothly
between Dirichlet (α = 0) and Neumann (α = π/2) cases andκ has the dimension of
a wavenumber. Note thatα and κ can be different for different parts of the boundary.
The spectrum depends parametrically on the boundary parameters,{kn(α, κ)}, and thus we
can define the counting functionN(k;α, κ). In [39, 7] we discussed the 2D and 3D Sinai
billiards, and showed that if we choose Dirichlet boundary conditions on all the billiard
boundariesexcluding the circle (sphere), and setκ 6= 0 on the circle (sphere) then the
quantity

d̃(k; κ) ≡ ∂N(k;α, κ)
∂α

∣∣∣∣
α=0

=
∑
n

∂kn(α, κ)

∂α

∣∣∣∣
α=0

δ(k − kn) ≡
∑
n

vnδ(k − kn) (49)

is to a large extent free of the effects of the bouncing balls. In the abovekn ≡ kn(α = 0)
which are the Dirichlet-everywhere eigenvalues. The corresponding semiclassical trace
formula reads [39, 7]:

d̃sc(k; κ) = (smooth part)+
∑

po

AjBj cos(kLj − νjπ/2) (50)

where

Bj = 2k

κLj

nj∑
i=1

cosθ(j)i . (51)

In the abovenj is the number of collisions with the circle (sphere) of thej th periodic orbit,
and{θ(j)i } are the angles of incidence on the boundary with respect to the normal. We note
that (49) is a weighted density of states where the standard 1 weights of theδ functions are
replaced byvn, and (50) is a weighted trace formula where the standard amplitudesAj are
replaced byAjBj . One can show, thatBj ≈ vn for long enough (ergodic) orbits.

We shall used̃ for our purposes as follows. Let us consider the weighted counting
function:

Ñ(k) ≡
∫ k

0
dk′ d̃(k′) =

∑
n

vn2(k − kn). (52)

The functionÑ is a staircase with stairs of variable heightvn. As was explained above, its
advantage overN is that it is semiclassically free of bouncing-ball effects (to leading order)
and corresponds only to the generic periodic orbits [39]. Similarly, we construct fromd̃sc

the functionÑsc. Having definedÑ, Ñsc, we proceed in analogy to the Dirichlet case. We
form from Ñ, Ñsc the functionsN̂, N̂sc, respectively, by multiplying with a window function
w(k′ − k) and then construct the measureδ(2) as in (25). The only difference is that the
normalization ofw must be modified to account for the ‘velocities’vn such as

d̄−1(k)
∑
n

v2
n|w(kn − k)|2 = 1. (53)

The above considerations are meaningful provided that the ‘velocities’vn are narrowly
distributed around a well-defined meanv(k) and we consider a small enoughk-interval,
such thatv(k) does not change appreciably within this interval. Otherwise,δ(2) is greatly
affected by the fluctuations ofvn (which is undesired) and the meaning of the normalization
is questionable.
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To demonstrate the utility of the above construction using the mixed boundary
conditions, we return to the 2D case. We setκ = 100π , and note that the spectrum at
our disposal for the mixed case was confined only to the interval 0< k < 600. First of
all, we want to examine the width of the distribution of thevn’s. In figure 10 we plot the
ratio of the standard deviation ofvn to the mean, averaged over thek-axis using a Gaussian
window. We use the same window also in the calculations below. The observation is
that the distribution ofvn is moderately narrow and the width decreases algebraically ask

increases. This justifies the use of the mixed boundary conditions as was discussed above.
One also needs to check the validity of (47), and indeed we found compliance with GOE
also for the mixed case (results not shown). We next compare the functionsC(l; k) for
both the Dirichlet and the mixed boundary conditions. It turns out, that also in the mixed
case the functionsC(l; k) (not shown) fluctuate inl with no special tendency. The averages
Cavg(k) for the Dirichlet and mixed cases are compared in figure 11. The values in the
mixed case are systematically smaller than in the Dirichlet case which is explained by the
efficient filtering of tangent and close to tangent orbits that are vulnerable to large diffraction
corrections [34, 13]. However, fromk = 250 on the two graphs show the same trends,
and the values ofCavg in both cases are of the same magnitude. Thus, the qualitative
behaviour ofδ(2)smooth is shown to be equivalent in the Dirichlet and mixed cases, which gives
us confidence in usingδ(2)smooth together with the mixed boundary conditions procedure.

We finally applied the mixed boundary conditions procedure to computeδ
(2)
smooth for the

desymmetrized 3D Sinai withL = 1, R = 0.2 and setκ = 100. We first verified that
also in the 3D case the velocitiesvn have narrow distribution—see figure 10. Next, we
examined equation (47) using quantal data, and discovered that there are deviations from
GOE (figure 12). At present, we have no satisfactory explanation of these deviations, but
we suspect that they are caused because the ergodic limit is not yet reached for the length
regime under consideration due to the effects of the infinite horizon which are more acute in
3D. Nevertheless, from observing the figure as well as suggested by semiclassical arguments,
it is plausible to assume thatK(ξ) ∝ ξ for small ξ . Hence, this deviation should not have
any qualitative effect onδ(2) according to (41). Similar to the 2D case, the behaviour of
the functionC(l; k) is fluctuative inl, with no special tendency (figure 13). If we average
C(l; k) over the universal intervalLerg = 2.5 6 l 6 Lcpu = 5, we obtainCavg(k) which
is shown in figure 14. The averagesCavg(k) are fluctuating with a mild decease ink, and
therefore we can conclude that

O(k−β ln k) 6 δ(2),3D
smooth6 O(ln k) (54)

where the ‘optimistic’ measure (leftmost term) corresponds toCavg(k) = O(k−β), β > 0,
and the ‘pessimistic’ one (rightmost term) is due toCavg(k) = constant. In other words, the
error estimates (46), (54) for the 2D and 3D cases, respectively, are the same, and in sharp
contrast to the ‘traditional’ error estimate which predicts that the errors should be different
by a factorO(h̄−1). On the basis of our numerical data, and despite of the uncertainties
which were clearly delineated, we can safely exclude the ‘traditional’ error estimate.

4. Discussion

Our main finding was that the upper bound on the semiclassical error is a logarithmic
divergence, which is independent of the dimension (equations (46) and (54)). In this respect,
there are a few points which deserve discussion.

To begin, we shall try to evaluateδ(2)smooth using the explicit expressions for the leading
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Figure 10. Calculation ofQ ≡ √〈v2
n〉 − 〈vn〉2/|〈vn〉| for (a) quarter 2D Sinai billiard and for

(b) the desymmetrized 3D Sinai billiard.

corrections to the semiclassical counting function of 2D generic billiard system, as derived
by Alonso and Gaspard [11]:

N(k) = N̄(k)+
∑
j

Aj

Lj
sin

[
kLj + Qj

k
+O(1/k2)

]
(55)
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Figure 11. Comparison ofCavg(k) for Dirichlet and mixed boundary conditions for the quarter
2D Sinai billiard. We used a Gaussian window withσ = 40.

Figure 12. Check of equation (47) for the desymmetrized 3D Sinai billiard. The minimalξ

corresponds toLerg = 2.5. The functionI (ξ) is defined as in figure 8. Note the logarithmic
scale.
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Figure 13. The functionsC(l; k) for desymmetrized 3D Sinai billiardL = 1, R = 0.2 with
mixed boundary conditions. We took a Gaussian window withσ = 20, and smoothed over
l-intervals of≈ 0.3. The upper vertical bars indicate the locations of primitive periodic orbits.

Figure 14. Averaging in l of C(l; k) for 3D Sinai billiard as a function ofk. The averaging
was performed in the intervalLerg= 2.5< l < 5= Lcpu.
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whereAj are the standard semiclassical amplitudes (see (30)),Lj are the lengths of periodic
orbits andQj are thek-independent amplitudes of the 1/k corrections. TheQj ’s are given in
[11]. In the above equation we ignored the case of odd Maslov indices. If we calculate from
N(k) the corresponding length spectrum̂D(l; k) using a (normalized) Gaussian window
w(k′ − k) = (1/ 4

√
πσ 2) exp[−(k′ − k)2/(2σ 2)], we obtain:

D̂(l; k) ≈ i
√
σ

2 4
√
π

∑
j

Aj

Lj
[eik(l−Lj )−i

Qj

k e−(l−Lj )
2 σ2

2 − eik(l+Lj )+i
Qj

k e−(l+Lj )
2 σ2

2 ]. (56)

In the above we regarded the phase eiQj/k as slowly varying. The results of Alonso
and Gaspard [11] suggest that theQj are approximately proportional to the length of the
corresponding periodic orbits:

Qj ≈ QLj . (57)

We can therefore well approximatêD as:

D̂(l; k) ≈ i
√
σ

2 4
√
π

e−iQl/k
∑
j

Aj

Lj
[. . .] = e−iQl/kD̂sc−GTF (58)

whereD̂sc−GTF is the length spectrum which corresponds to the semiclassical GTF for the
counting function (without 1/k corrections). We are now in a position to evaluate the
semiclassical error, indeed:

δ
(2)
smooth(k) = 2

∫ LH

Lmin

dl |D̂(l; k)− D̂sc−GTF(l; k)|2 =

= 8
∫ LH

Lmin

dl sin2

(
Ql

2k

)
|D̂(l; k)|2. (59)

If we now use equation (47) andK(l) ≈ gl/LH (which is valid for l < LH for chaotic
systems), we obtain:

δ
(2)
smooth(k) ≈

2g

π2

∫ LH

Lmin

dl

l
sin2

(
Ql

2k

)
= 2g

π2

∫ QLH/(2k)

QLmin/(2k)
dt

sin2(t)

t
. (60)

For k→∞ we have that∫ QLmin/(2k)

0
dt

sin2(t)

t
≈
∫ QLmin/(2k)

0
dt · t = O(1/k2) (61)

which is negligible, hence we can replace the lower limit in (60) with 0:

δ
(2)
smooth(k) ≈

2g

π2

∫ QLH
2k

0
dt

sin2(t)

t
. (62)

This is the required expression. The dimensionality enter inδ
(2)
smooth(k) only through the

power ofk in LH.
Let us apply equation (62) to the 2D and 3D cases. In two dimensions we have that

LH = Ak in leading order, whereA is the billiard’s area, thus,

δ
(2),2D
analytical(k) ≈

2g

π2

∫ QA/2

0
dt

sin2(t)

t
= constant= O(k0) (63)

which means that the semiclassical error in 2D billiards is of the order of the mean spacing,
and therefore the semiclassical trace formula is (marginally) accurate and meaningful. This
is compatible with our numerical findings within the limitations of the numerical fluctuations.
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For 3D, the coefficientsQj were not obtained explicitly, but we shall assume that
they are still proportional toLj (equation (57)) and thus that (62) holds. For 3D billiards
LH = (V/π)k2 to leading order, whereV is the billiard’s volume. Thus the upper limit in
(62) isQV k/(2π) which is large in the semiclassical limit. In that case, we can replace
sin2(t) with its mean value1

2 and the integrand becomes essentially 1/t which results in:

δ
(2),3D
analytical(k) = O(ln k). (64)

That is, in contrast to the 2D case, the semiclassical error diverges logarithmically and the
semiclassical trace formula becomes meaningless as far as the prediction of individual levels
is concerned. This is compatible with our numerical results within the numerical dispersion.
However, it relies heavily on the assumption thatQj ≈ QLj , for which we can offer no
justification. We note in passing, that the logarithmic divergence persists also ford > 3.

Another interesting point relates to integrable systems. It can happen that for an
integrable system it is either difficult or impossible to express the Hamiltonian as an explicit
function of the action variables. In that case, we cannot assign to the levels other quantum
numbers than their ordinal number, and the semiclassical error can be estimated usingδ(2).
However, since for integrable systemsK(τ) = 1, we find that:

δ
(2),int
smooth≈

1

2π2

∫ 1

τerg

dτ
C(τ)

τ 2
. (65)

Therefore, for deviations which are comparable with the chaotic cases,C(τ) = O(1), we
getδ(2),int

smooth= O(h̄1−d) which is much larger than for the chaotic case and diverges ford > 1.
Formula (41) for the semiclassical error contains semiclassical information in two

respects. Obviously,C(τ), which is the difference between the quantal and the semiclassical
length spectra contains semiclassical information. However, the fact that the lower limit of
the integral in (41) is finite is a consequence of semiclassical analysis. If this lower limit is
replaced by 0, the integral diverges for finite values of ¯h, which is meaningless. Therefore,
the fact that the integral has a lower cut-off, or rather, thatD is exactly 0 below the shortest
period, is a crucial semiclassical element in our analysis.

Finally, we consider the case in which the semiclassical error is estimated with no
periodic orbits taken into account. That is, we want to calculate〈|N(E) − N̄(E)|2〉E
which is the number variance62(x) for the large argumentx = 1E d̄(E) � 1. This
implies C(τ) = 1, and using (41) we find thatδ(2)smooth= g/(2π2) ln(tH/terg), which in the
semiclassical limit becomesg/(2π2) ln(tH) = O(ln h̄). This result is fully consistent and
compatible with previous results for the asymptotic (saturation) value of the number variance
62 (see for instance [29, 40, 41]). It implies also that the pessimistic error bound (44) is of
the same magnitude as if periodic orbits were not taken into account at all. (Periodic orbits
improve, however, quantitatively, since in all cases we obtainedCavg < 1.) Thus, if we
assume that periodic orbit contributions do not makeNsc worse thanN̄ , then the pessimistic
error boundO(ln h̄) is the maximalone in any dimensiond. This excludes, in particular,
algebraic semiclassical errors, and thus refutes the traditional estimateO(h̄2−d).
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